

CODE QUALITY DATA SHEET / 1

If you write QuickTest® Professional test scripts or libraries, you need to

realize that you are a programmer! Even though these scripts are used

for testing purposes, rest assured that you are creating program code.

Just like the program code that goes into the applications under test,

the code used for test automation needs to possess similar quality

characteristics. The sooner you treat test automation as a development

activity, the sooner you will realize the cost-saving potential of this

technology!

Test Design Studio
I m p r o v e t h e Q u a l i t y o f y o u r C o d e

W H AT I S C O D E Q UA L I T Y ?

Code quality, as it pertains to automated tests,

is often thought to be a subjective measurement

of some of the following code characteristics:

 Ease of Maintenance - how easily can your

code be maintained when the AUT is

modified or new functionality is required?

 Low Complexity - similar to readability, how

easily can someone comprehend the

purpose of your code?

B E N E F I T S AT A G L A N C E

 Real-time Syntax Checking - helps you

identify syntax errors quickly, as they are

created

 Static Language Analysis - helps you

identify potential code issues and run-

time errors

 Code Metrics - helps you objectively

measure the complexity and

maintainability of your code

CODE QUALITY DATA SHEET / 2

Real-time Syntax Checking

Test Design Studio identifies errors in real time as you type!

All errors are underlined in the editor so that you can quickly

identify the problem and fix it. QuickTest® Professional

performs syntax checking when you save a file or think to

invoke it off manually, but Test Design Studio is constantly

analyzing your syntax for immediate feedback.

Which Would You Choose?

Compare the two screen shots below to see the difference between the editing surface in QuickTest®

Professional compared to the feedback you receive in Test Design Studio. Given the exact same code in both

tools, which do you think will make it harder to produce syntax errors?

Test Design Studio

Our Test Design Studio project was the first product on the market

to treat QuickTest® Professional automation as a programming

activity. The rich integrated development environment allows

automation engineers to reach new levels of productivity. With

the introduction of code quality features in our latest version, you

can now reach new levels of quality in the code you are creating.

Screen Shot from QuickTest® Professional v10.0 Screen Shot from Test Design Studio v2.0

Test Design Studio is Constantly

Analyzing Your Syntax for

Immediate Feedback

CODE QUALITY DATA SHEET / 3

Static Language Analysis

Syntax checking is only half the story, and only ensures

you follow the basic syntax of the language. Other errors

are typically not revealed by QuickTest® Professional

until you try to execute your tests. This is because the

code is syntactically correct even if not implemented

properly. These are the most time-consuming errors to

fix because it is only during execution that you discover

many silly mistakes. Oversights like declaring the same

variable more than once because you copied/pasted

code, forgetting to declare variables when 'Option

Explicit' is used, or mistyping the name of a function or

variable. When these issues are discovered at run-time,

it usually means a significant loss of productivity. Tests

have to be re-executed and application state must be

restored.

Test Design Studio analyzes your code for many common

errors and warns you about other potential logical

errors. These issues are identified during design at the

time of creation, not later when the code is actually

executed and potential time has passed since the

developer's mind was fresh. The following lists highlight

many of the errors and warnings generated by Test

Design Studio by static language analysis:

General:

 Promote use of the 'Option Explicit' statement to help

enforce language rules.

 Cannot make duplicate declarations of variables in the

same scope.

 Must use the various Exit statements in the proper

context (i.e. using 'Exit Function' only within a 'Function'

declaration).

 Check for proper use of parenthesis when invoking a

function.

 Function calls must provide the proper number of

arguments.

 Function calls and variable usage must refer to a known

entity (identifies use of invalid or misspelled items).

 Ensure that object-based assignment statements use the

'Set' keyword, and non-object-based assignments do not.

 'Select Case' constructs must have at least one 'Case'

statement.

Class Declarations:

 Ensure classes instantiated with 'New' keyword are

located in the same file as the statement instantiating it.

 Default Properties/Functions must be 'Public'.

 Only one member of a class can be 'Default'.

 A default property can only be defined on the 'Get'

declaration.

 'Class_Initialize' and 'Class_Terminate' cannot have

arguments.

 Property declarations must have consistent argument

signatures.

 Warn if public variables are used in a class instead of

public properties.

Function/Sub Declaration:

 'Sub' declarations must not attempt to return a value.

 Warn if a 'Function' declaration has no return value (did

the developer forget?).

 Warn if a parameter is declared but never actually used.

Test Design Studio

When these issues are discovered at

run-time, it usually means a

significant loss of productivity

CODE QUALITY DATA SHEET / 4

Code Metrics

Code Metrics are a useful tool implemented by Test

Design Studio to provide an objective analysis of the

complexity of your code. Higher code complexity leads

to higher defect rates and decreased maintainability.

The following metric values are calculated for major

language elements including entire tests, class

declarations, functions, and properties

Cyclomatic Complexity

This metric measures the number of paths through your

code. Inclusion of branch and loop statements (like ‘If’

and ‘For’) increases the number of paths, and more

paths lead to increased complexity.

Lines of Code

This metric counts the number of executable lines of

code while ignoring whitespace and comments.

Halstead Metrics

The Halstead complexity measures are software metrics

introduced by Maurice Howard in 1977, and have proven

their value even as technology transforms. The

individual metric values are calculated behind the scenes

to help determine the consolidated Maintainable Index

value.

Maintainability Index

All of the previous metrics are used to calculate a

maintainability index between 0 and 100. Values of 0-9

indicate high maintenance, 10-19 moderate

maintenance, and 20-100 are low maintenance.

Test Design Studio

Combine Code Metrics with Peer

Reviews or Outsourced Projects

to Quickly Identify Complex Code

Sample Output of Code Metrics from Test Design Studio

CODE QUALITY DATA SHEET / 5

Find Out More

For more information on Test Design Studio, visit http://www.patterson-consulting.net/products/

test_design_studio/Default.aspx.

Download a Trial

To try Test Design Studio for yourself, download a fully-functional trial and learn how much easier

automation can be when you have to right tool for the job.

Test Design Studio

http://www.patterson-consulting.net

Copyright © 2010 Patterson Consulting, LLC. All rights reserved.

QuickTest® Professional is a registered trademark of Hewlett-Packard Development Company, L.P. All other marks and names

mentioned herein may be trademarks of their respective companies

Item No: TDS_20_DS_CQ_R1

